Hyperbola

Definition: A hyperbola is a curve where the absolute value of the difference of the distance between any point on the curve and two fixed points, called foci, is constant.

Equation:
The equation of a hyperbola is in the form

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=+1
$$

> The coordinates of the center are $(0,0)$
> The lines associated with the equations: $y=\frac{b}{a} x, y=\frac{-b}{a} x$
are the asymptotes of the curve
> The relationship among the values of the parameters a, b
and the distance c (between the center of hyperbola and one of its foci) is represented by

$$
c^{2}=a^{2}+b^{2}
$$

if the equation is $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ (case 1)
> The coordinates of the vertices are $(a, 0)$ and $(-a, 0)$
> The foci are located on the x-axis and their coordinates are $(c, 0)$ and ($-c, 0$)
if the equation is

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1(\operatorname{case} 2)
$$

> The coordinates of the vertices are $(0, b)$ and $(0,-b)$
> The foci are located on the y-axis, and their coordinates are $(0, c)$ and ($0,-c$)

Case 1:
sketch:
(1) sketch the asymptotes

$$
\begin{array}{r}
y=\frac{b}{a} x \text { and } y=\frac{-b}{a} x \\
y=\frac{9}{12} x \quad y=\frac{-9}{12} x \\
y=\frac{3}{4} x, y=\frac{-3}{4} x
\end{array}
$$

Coordinates of the vertices.

$$
(12,0) \text { and }(-12,0)
$$

Coordinate of the foci

$$
(15,0) \quad(-15,0)
$$

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=12^{2}+9^{2} \\
& c=\sqrt{225} \\
& c=15
\end{aligned}
$$

Case 1 Example:

Case 2: Example

$$
\frac{x^{2}}{3^{2}}-\frac{y^{2}}{4^{2}}=-1
$$

(1) Sketch asymptotes

$$
\begin{array}{ll}
y=\frac{b}{a} x & y=\frac{-b}{a} x \\
y=\frac{4}{3} x & y=-\frac{4}{3} x
\end{array}
$$

(2) Vertices are $(0, b)(0,-b)$

$$
(0,4) \text { and }(0,-4)
$$

(3)

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=3^{2}+4^{2}
\end{aligned} \quad \underbrace{(0,5)}_{\text {foci }}(0,-5)
$$

Case 2 :

Sketch and check on desmos
(1) $\frac{x^{2}}{4}-\frac{y^{2}}{16}=1$
(2) $\frac{x^{2}}{3^{2}}-\frac{y^{2}}{5^{2}}=-1$
(3) $\frac{x^{2}}{121}-\frac{y^{2}}{169}=-1$

Conics Hyperbola Lesson 1. notebook

