Parabola

A parabola is a curve where all points are equidistant from a fixed line called the directrix, and a fixed point called the focus.
the equation of a parabola (standard form) is
Case 1:
$(x-h)^{2}=4 c(y-k) \quad(c$ is not equal to zero)
or
Case 2:
$(y-k)^{2}=4 c(x-h) \quad(c$ is not equal to zero)
> The coordinates of the vertex are (h, k)
$>$ The distance between the focus and the directrix is $2|c|$

Case 1:
$(x-h)^{2}=4 c(y-k) \quad(c$ is not equal to zero)
$>$ the equation of the parabola's axis of symmetry is $x=h$
> the coordinates of the focus are ($h, k+c$)
> the equation of the directrix is $y=k-c$
> The parabola opens upwards if $c>0$
> The parabola opens downwards if $c<0$

$$
\begin{aligned}
\text { Ex: }(-1)^{2} & =2(+3) \\
c & =2 \\
c & =0.5
\end{aligned}
$$

$$
F(1,-3+0.5)
$$

$$
F(1,-2.5)
$$

$$
(1,-3)
$$

Directrix: $y=k-c$

$$
y=-3-0.5
$$

$$
c>0 \text { opens }
$$

$$
y=-3.5
$$

upwards.

$$
(x-1)^{2}=2(y+3)
$$

$$
y=-3.5
$$

(1,-2.5)
Label: F(1,-2.5)
$(1,-3)$
\checkmark Label: $\mathrm{V}(1,-3)$
$x=1$
-10

Case 2:
$(y-k)^{2}=4 c(x-h) \quad(c$ is not equal to zero)
$>$ The equation of axis of symmetry is $y=k$
> The coordinates of the focus are $(h+c, k)$
> The equation of the directrix is $x=h-c$
$>$ if ($c<0$), the parabola opens towards the left
$>$ if $(c>0)$, the parabola opens towards the right.
Ex:
$(y+2)^{2}=-8(x-1)$
Observations:
$(h, k): \rightarrow(1,-2)$
$4 c=-8$
$c=-2$
opens Right Left

Equation of directrix: $x=h-c$ $x=1-(-2)$
$F(h+c, k)$
$x=3$
$(-1,-2)$

Work: Sketch the following and check your answers in Desmos
QI:-

$$
(y-14)^{2}=6(x+8)
$$

Q2: $y^{2}=-8 x$
Qu: $x^{2}=2 y$
Qu:- $(x-12)^{2}=-8(y+2)$

Finding the equation of a parabola
In order to find the equation of a parabola; Case 1 , or Case 2 follow the following steps:
> Deduce some information concerning parameters c, h and k
> Write the equation of the parabola
Ex 1:

$$
\begin{array}{ll}
8=2|c| & (x-h)^{2}=4 c(y-k)^{2} \\
c=-4 & (x+4)^{2}=-16(y+1)
\end{array}
$$

$$
\begin{aligned}
& \text { Case 2: } \\
& (y-k)^{2}=4 c(x-h) \\
& h=4 \\
& k=-8 \\
& \text { plog in } h, k, x, y \\
& (-18-(-8))^{2}=4 c(y-4) \\
& (-18+8)^{2}=4 c(9-4) \\
& (-10)^{2}=4 c(5) \\
& 100=20 c \\
& c=\frac{100}{20}=5 \\
& (y-k)^{2}=4 c(x-h) \\
& (y+8)^{2}=20(x-4)
\end{aligned}
$$

Shading inequalities in a parabola
Ex: Graphically represent the region corresponding to the inequality: $(x+2)^{2}<-0.5(y-3)$

$$
(h, k)=(-2,3)
$$

when $y=0$

$$
\begin{aligned}
& (x+2)^{2}=-0.5(0-3) \\
& (x+2)^{2}=(-0.5)(-3) \\
& (x+2)^{2}=1.5
\end{aligned}
$$

$$
\begin{array}{l|l}
x+2=1.22 & x+2=-1.22 \\
x=1.22-2 & x=-1.22-2 \\
x=-0.78 & x=-3.22
\end{array}
$$

x-intercepts
$(-0.78,0) \quad(-3.22,0)$.

