Exponential Growth and decay
Compounded interest:
If the initial value invested in a bank is given by "a", at a fixed
interest rate of " i " compounded " n " times per year, then the accumulated capital " y " after x amount of years is given by the following formula

$$
y=a\left(1+\frac{i}{n}\right)^{n x}
$$

Ex: If Mila invested 1000 dollars in Desjardin at an interest rate of 6\%
compounded

1. annually
2. Every 6 months
3. Each month
4. Each day

How much money would she have as an old woman of 89 ? She is currently 16 years old

$$
y=a\left(1+\frac{i}{n}\right)^{n x}
$$

$a=$ initial value $=\$ 1000$
$l=6 \%=0.06$
$x=\#$ years $=73(89-16)$

1. $n=1$

$$
\begin{gathered}
y=1000\left(1+\frac{0.06}{1}\right)^{1 \times 73} \\
1000(1.06)^{73} \\
\$ 70,360.37
\end{gathered}
$$

2. $n=2$

$$
\begin{gathered}
y=1000\left(1+\frac{0.06}{2}\right)^{2 \times 73} \\
y=1000(1.03)^{146} \\
\$ 74857.41
\end{gathered}
$$

3. $n=12$

$$
\begin{aligned}
& y=1000\left(1+\frac{0.06}{12}\right)^{12 \times 73} \\
& y=1000(1.005)^{876} \\
& \$ y=78.971 .44
\end{aligned}
$$

4. $n=365$

$$
\begin{gathered}
y=1000\left(1+\frac{0.06}{365}\right)^{365 \times 73} \\
1000(1.00016438)^{26645} \\
\$ y=79809.3
\end{gathered}
$$

p186

$$
17,18,19,20
$$

