Exponential Function $f(x)=c^{x}$

The function $f(x)=c^{x}$, where c is a positive real number different from 1 , is called the basic exponential function with ' c ' as its base.

Depending on the value of the base, it can be a function of growth or decay.

Case 1: If $c>1$

Case 2: if $0<c<1$, then it is a decreasing function.

- dom $f=R$ (all real numbers) and range $f=R^{+}-\{0\}$ (positive real numbers excluding zero)
- The initial value is equal to 1 as $\left(c^{0}=1\right)$
- The function has no zero
- The function is positive over R
- The x-axis is an asymptote to the curve

The most common Bases

The most common bases of the exponential function are the numbers 10 and e.
e, like $p i$, is an irrational number commonly embedded in how nature is designed. It is closely linked to the golden ration $e=2.71828 \ldots$.

$$
\begin{aligned}
& \text { pl40 } \\
& \text { Qt:- } \quad(-2, \stackrel{?}{y}) \\
& A\left(-\frac{1}{2}, \frac{2}{3}\right) \in \quad y^{\prime}=c^{x} \\
& \frac{2}{3}=c^{-\frac{1}{2}} \\
& \frac{2}{3}=\frac{c^{-\frac{1}{2}}}{1} \\
& \frac{2}{3}=\frac{1}{c^{1 / 2}} \text { (flip both sides). } \\
& \frac{3}{2}=c^{1 / 2} \quad \text { (square both sides) } \\
& \left(\frac{3}{2}\right)^{2}=\left(c^{1 / 2}\right)^{2} \\
& \frac{9}{4}=c \\
& \text { Rule } \\
& y=\left(\frac{9}{4}\right)^{x}
\end{aligned}
$$

(a) Plug in $x=-2$

$$
y=\left(\frac{9}{4}\right)^{-2}=\left(\frac{4}{9}\right)^{2}=\frac{16}{81}
$$

(b) Slog in $y=\frac{4}{9}$

$$
\begin{aligned}
& y=\left(\frac{9}{4}\right)^{x} \\
& \left(\frac{4}{9}\right)^{1}=\left(\frac{9}{4}\right)^{x} \\
& \left(\frac{9}{4}\right)^{-1}=\left(\frac{9}{4}\right)^{x} \\
& \text { therefor } x=-1 \\
& \text { P139-140 }
\end{aligned}
$$

Q1-6

Exponential Function
A function defined by a rule in which the independent variable (x) appears as an exponent.
The rule of an exponential function is $y=a c^{b(x-h)}+k$ where a and b are NOT equal to zero
the base c is greater than 0 and not equal to 1
Using the laws of exponents you can transfer this rule to the standard form, which is $f(x)=a c^{x}+k$
Ex:

$$
f(x)=5(3)^{2(x+1)}+7
$$

Recall

$$
\begin{aligned}
& \quad a^{m} \cdot a^{n}=a^{m+n} \\
& f(x)=5(3)^{2 x+2}+7 \\
& = \\
& 5(3)^{2 x}(3)^{2}+7 \\
& 5(9)(3)^{2 x}+7 \\
& \\
& 45(3)^{2 x}+7 \quad \text { Law } \\
& 45\left(3^{2}\right)^{x}+7\left(a^{m}\right)^{n}=a^{m n} \\
& f(x)=
\end{aligned} 45(9)^{x}+7 \text { Standard } . ~ l
$$

Graphing the exponential Function
While graphing $f(x)=a c^{x}+k$, the curve passes through the point with coordinates ($0, a+k$), and one of its ends approaches a horizontal asymptote represented by the equation $y=k$

Ex: Rule $y=4(3)^{x}-2$
$>$ increasing function as $c>1$
> Passes through the point ($0,4+(-2)$) i.e. $(0,2)$
> asymptote $y=-2$

Finding the Rule of an exponential function

$$
\begin{aligned}
& y=a c^{x}+k \\
& y=a c^{x}+4 \\
& \text { Plug in }(0,6) \quad y=4 \\
& 6=a c^{0}+4 \quad\left(c^{0}=1\right) \\
& 6=a+4 \\
& a=6-4 \\
& a=2 \\
& y=2 c^{x}+4 \quad(\text { plug in }(-1,14) \\
& 14=2 c^{-1}+4 \\
& 14=\frac{2}{c}+4 \\
& 14-4=\frac{2}{c} \\
& 10=\frac{2}{c}=>10 c=2 \\
& c=\frac{2}{10}=\frac{1}{5}=0.2
\end{aligned}
$$

Rule: $y=2(0.2)^{x}+4$

Questions
Textbook VI.
p173,174

$$
Q 2,3,4,5,
$$

$$
p 173
$$

Qu:-
(a) $f(x)=2\left(\frac{1}{5}\right)^{x+8}-250$

$$
\begin{aligned}
& 2\left(\frac{1}{5}\right)^{x}\left(\frac{1}{5}\right)^{8}-250 \\
& 0.00000512\left(\frac{1}{5}\right)^{x}-250 \\
& \text { Domain: } \mathbb{R} \\
& f(x) \text { as } x \rightarrow \infty \mid
\end{aligned}
$$

Exponential Equation - Form $\mathrm{c}^{\mathrm{u}}=\mathrm{c}^{\mathrm{v}}$
When both sides of an exponential equation can be written as powers of the same base, we use the logical equivalence

$$
c^{u}=c^{v} \Leftrightarrow \Rightarrow u=v
$$

Key step: Makes bases on both sides equal. It follows that the exponents are equal as well.

So

$$
x=\frac{6}{3}=2
$$

Rule of an Exponential Function $f(x)=a c^{b x}$
Once the unit of time is well defined, x represents the elapsed time. y could be the number of bacteria, money gained etc
$a=$ initial value
$b=$ the number of periods per unit time
$c=$ is the keep (in case of percentage gain, calculate it by using
1+percentage, or 1- percentage); in case of bacteria doubling or tripling c would be 2 and 3 respectively.

Ex: In a controlled environment, there are initially 10 bacteria. The unit of time is in hours.

- When the number of bacteria triples ($c=3$) every 15 minutes, the rule will be $y=10(3)^{4 x}$. (why the 4 ?)
- When the number of bacteria double every 30 minutes, the rule is $y=10(2)^{2 x}$
- When the number of bacteria quadruples every 2 hours, the rule is $\mathrm{y}=10(4)^{0.5 x}$
p 149,150
Q14, Q15, 16,18,19
p 152 Q20, Q24(try it)
Q25,26,27
P 154 Q28,29,

