Trigonometric Equations

The objective of solving a trigonometric equation is to determine the value of the variable, which in this case is the angle over a given interval

Ex: If $\sin x=1 / 2$
then x is the $\sin ^{-1}(x)$
i.e it is the angle whose sin value is equal to $1 / 2$

From the trig circle, you can see that the angle is $\pi / 6$ and $5 \pi / 6$ over an interval $[0-2 \pi]$

What is the solution of the above equation over an interval of [$0-4 \pi$]?

simplify $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{13 \pi}{6}, \frac{17 \pi}{6}$
What is the solution to the above equation over all Real Numbers
Ans:

$$
\begin{array}{r}
{\left[\frac{\pi}{6}+2 \pi n\right] \cup\left[\frac{5 \pi}{6}+2 \pi n\right]} \\
\text { where } \\
n \in \mathbb{Z} \\
n \text { belongs to integers }
\end{array}
$$

Ex:
$3 \sin x-2 \cos ^{2} x=0$ where

$$
x \in[0,2 \pi]
$$

When you have multiple trig ratios in an equation, always try to
switch to one consistent ratio using your trig identities.

$$
\begin{gathered}
\because \begin{array}{c}
\sin ^{2} x+\cos ^{2} x=1 \\
\cos ^{2} x=1-\sin ^{2} x
\end{array} \\
3 \sin x-2\left(1-\sin ^{2} x\right) \equiv 0 \\
3 \sin x-2+2 \sin ^{2} x=0 \\
\text { Let } \sin x=p \\
3 p-2+2 p^{2}=0 \\
2 p^{2}+3 p-2=0 \\
2 p^{2}+4 p-p-2=0 \\
2 p(p+2)-1(p+2)=0 \\
(p+2)(2 p-1)=0 \\
p+2=0 \\
p=-2
\end{gathered} \begin{aligned}
& 2 p-1=0 \\
& p=\frac{1}{2} \\
& \text { sin } x=-2
\end{aligned} \begin{aligned}
& \sin x=\frac{1}{2} \\
& \phi \\
& \text { because } \sin x \\
& \text { cannot be lower } \quad x=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& \text { than }-1
\end{aligned}
$$

Ex 3:-

$$
\tan ^{2} x+3 \sec x \tan x-\sec ^{2} x=1
$$

(1) Convert to same Ratio
over \mathbb{R}

$$
\begin{aligned}
& \frac{\sin ^{2} x}{\cos ^{2} x}+\frac{3 \cdot 1}{\cos x} \cdot \frac{\sin x}{\cos x}-\frac{1}{\cos ^{2} x}=1 \\
& \frac{\sin ^{2} x}{\cos ^{2} x}+\frac{3 \sin x}{\cos ^{2} x}-\frac{1}{\cos ^{2} x}=1
\end{aligned}
$$

Restriction $\cos ^{2} x \neq 0$

$$
\begin{aligned}
& \cos x \neq 0 \\
& \frac{\sin ^{2} x+3 \sin x-1}{\cos ^{2} x}=1 \\
& \text { cross-multiply. } \\
& \sin ^{2} x+3 \sin x-1=\cos ^{2} x \\
& \sin ^{2} x+3 \sin x-1=1-\sin ^{2} x \text { (change to the) } \\
& \omega \Leftarrow \text { same Ratio } \\
& \sin ^{2} x+\sin ^{2} x+3 \sin x-1-1=0 \\
& 2 \sin ^{2} x+3 \sin x-2=0 \\
& 2 p^{2}+3 p-2=0 \\
& 2 p^{2}+4 p-p-2=0 \\
& 2 p(p+2)-1(p+2)=0 \\
& (p+2)(2 p-1)=0 \\
& p+2=0 \\
& p=-2 \\
& \sin x=-2 \\
& x=\phi \\
& \begin{array}{l}
P 249 \\
Q 1,2,3
\end{array} \\
& 2 p-1=0 \\
& p=\frac{1}{2} \\
& \sin x=\frac{1}{2} \\
& x=\frac{\pi}{6}, \frac{5 \pi}{6} \\
& x=\left[\frac{\pi}{6}+2 \pi n\right] \cup\left[\frac{5 \pi}{6}+2 \pi n\right] \\
& n \in Z^{\prime}
\end{aligned}
$$

