Trigonometric Equations

The objective of solving a trigonometric equation is to determine the value of the variable, which in this case is the angle over a given interval

Ex: If $\sin x = 1/2$

then x is the $\sin^{-1}(x)$

i.e it is the angle whose sin value is equal to 1/2

From the trig circle, you can see that the angle is $\pi/6$ and $5\pi/6$ over an interval $[0-2\pi]$

What is the solution of the above equation over an interval of $[0-4\pi]$?

Ans:
$$\frac{11}{6}$$
, $\frac{511}{6}$, $\frac{11}{6}$ + 211 , $\frac{511}{6}$ + 211
simplify $\frac{11}{6}$, $\frac{511}{6}$, $\frac{1311}{6}$, $\frac{1711}{6}$

What is the solution to the above equation over all Real Numbers

Ans:
$$\left(\frac{\pi}{6} + 2\pi n \right) U \left(\frac{5\pi}{6} + 2\pi n \right)$$
 where
$$n \in \mathbb{Z}'$$
 n belongs to integers

$$E \times 2$$
:
 $3 \sin X - 2 \cos X = 0$ where $X \in [6,21]$

When you have multiple trig ratios in an equation, always try to switch to one consistent ratio using your trig identities.

$$3\sin x + \cos^2 x = 1$$

$$\cos^2 x = 1 - \sin^2 x$$

$$3\sin x - 2(1 - \sin^2 x) = 0$$

$$3\sin x - 2 + 2\sin^2 x = 0$$

$$2e^2 + 3e^{-2} = 0$$

$$2e$$

$$\frac{\sum x^{3}:-}{\tan x} + 3 \operatorname{sec} x \tan x - \operatorname{sec} x = 1$$

$$\underbrace{\operatorname{Oconvert}}_{\text{Cos} x} + 3 \cdot \underbrace{\frac{1}{\cos x}}_{\text{Cos} x} \cdot \frac{\sin x}{\cos x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\sin x}{\cos^{2} x}}_{\text{Cos} x} + \frac{3 \sin x}{\cos^{2} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\sin x}{\cos^{2} x}}_{\text{Cos} x} + \frac{3 \sin x}{\cos^{2} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\sin x}{\cos^{2} x}}_{\text{Cos} x} + \frac{3 \sin x}{\cos^{2} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\cos^{2} x}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\sin x}{3 \sin x - 1}}_{\text{Cos} x} + \frac{3 \sin x - 1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\sin^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\sin^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\sin^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\sin^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\sin^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\sin^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\cos^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\cos^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\cos^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\cos^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x} = 1$$

$$\underbrace{\frac{\cos^{2} x}{\cos^{2} x + 3 \sin x - 1}}_{\text{Cos} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}}_{\text{Sum} x} - \frac{1}{\cos^{2} x} = 0$$

$$\underbrace{\frac{\cos^{2} x}{\sin^{2} x + 3 \sin x - 1}}_{\text{Sum} x} - \frac{1}{\cos^{2} x} = 0$$

$$\underbrace{\frac{\cos^{2} x}{\cos^{2} x + 3 \sin x - 1}}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin x - 1}_{\text{Sum} x} - \frac{1}{\cos^{2} x + 3 \sin^{2} x + 3 \sin^{2} x - \frac{1}{\cos^{2} x + 3 \sin^{2} x - \frac{1}{$$