Mathematical Expectation / Expected Value

A weighted average based on the probability of an experiment
M.E. $=\left(\right.$ Probability $_{1} \times$ Outcome $\left._{1}\right)+\left(\right.$ Probability $\left._{2} \mathrm{x} \mathrm{Outcome}_{2}\right)+\left(\right.$ Probability $_{3} \times$ Outcome ${ }_{3}$)...

If M.E. is positive \rightarrow Game favors the player
If M.E. negative \rightarrow Game does NOT favor the player
If M.E. $=0 \rightarrow$ Game is fair

Example 1

A friend offers to play a game with you. You have to pay $\$ 2$ to play and then roll a 6 -sided die. If you roll a 6 , you win $\$ 5$ and win your money back. If you roll a 5 , you get your money back and if you roll any other number, you lose your bet. Should you play this game?

Outcome	Probability	NET Value (Win - Bet)	$P \times V$
6	$\frac{1}{6}$	$7-2=5$	$\frac{5}{6}$
5	$\frac{1}{6}$	$2-2=0$	0
$1,2,3,4$	$\frac{4}{6}$	$0-2=-2$	$\frac{-4}{3}$

$$
\begin{gathered}
\text { M.E. }=\text { Sum of } \mathrm{P} \times \mathrm{V} \\
\text { M.E. }=\frac{5}{6}+0+\frac{-4}{3}=-0.5
\end{gathered}
$$

Therefore the game does not favor the player

Example 2

A company makes hockey sticks. These sticks can be sold wholesale for a profit of $\$ 3$ each. The sticks can also be sold retail for a profit of $5 \$$ each. The sticks can also be defective, resulting in a loss of $\$ 15$ each.

The company estimates that 12% of their sticks are rejected, 40% are sold wholesale, and 48% are sold retail.

What is the company's expected profit?

Outcome	Probability	NET Value (Win - Bet)	PxV
Rejected	0.12	-15	-1.8
Wholesale	0.40	3	1.2
Retail	0.48	5	2.4

$$
\begin{gathered}
\text { M.E. }=-1.8+1.2+2.4 \\
\text { M.E. }=1.8
\end{gathered}
$$

Example 3

A community organization holds a fundraiser raffle and sells 6000 tickets for $\$ 5$ each. First prize is $\$ 10000$, second prize is $\$ 2000$ and third prize is $\$ 1000$. Is this a fair raffle?

Outcome	Probability	NET Value (Win - $B e t)$	$P \times V$
$1^{\text {st }}$ place	$\frac{1}{6000}$	$10000-5=9995$	$\frac{1999}{1200}$
$2^{\text {nd }}$ Place	$\frac{1}{6000}$	$2000-5=1995$	$\frac{133}{400}$
$3^{\text {rd }}$ Place	$\frac{1}{6000}$	$1000-5=995$	$\frac{199}{1200}$
Rest of tickets	$\frac{5997}{6000}$	$0-5=-5$	$\frac{-1999}{400}$

$$
\begin{gathered}
\text { M.E. }=\frac{1999}{1200}+\frac{133}{400}+\frac{199}{1200}+\frac{-1999}{400} \\
\text { M.E. }=\frac{-17}{6} \text { or }-2.83
\end{gathered}
$$

Game is NOT fair because M.E. does NOT equal 0

Example 3

A roulette wheel has 37 slots numbers 0 through 36 . If you pick a winning number, you get your money back, plus 35 times the amount you bet. Joan places a $\$ 20$ bet on a number

How much can Joan expect to win? Is it worth her while to play this game?

Outcome	Probability	NET Value (Win - Bet)	PxV
Winning Number	$\frac{1}{37}$	$720-20=700$	$\frac{700}{37}$
Losing Number	$\frac{36}{37}$	$0-20=-20$	$\frac{-720}{37}$

$$
\begin{aligned}
& \text { M.E. }=\frac{700}{37}+\frac{-720}{37} \\
& \text { M.E. }=\frac{-20}{37} \text { or }-0.54
\end{aligned}
$$

Joan can expect to win \$ -0.54 and it is not worth her time.

Example 4

A game costs $\$ 10$ to play. You roll a die and the roll determines the amount of money you win.

If you roll an odd number, you lose your bet.
If you roll a 2 or a 6 , you get your bet back.
If you roll a 4, you win $\$ 20$ plus you get your bet back.

Is this a game fair?

Outcome	Probability	NET Value (Win - Bet)	$P \times V$
$1,3,5$	$\frac{3}{6}$	$0-10=-10$	-5
2,6	$\frac{2}{6}$	$10-10=0$	0
4	$\frac{1}{6}$	$30-10=20$	$\frac{10}{3}$

$$
\begin{aligned}
& \text { M.E. }=-5+0+\frac{10}{3} \\
& \text { M.E. }=\frac{-5}{3} \text { or }-1.67
\end{aligned}
$$

The game is not fair because the ME is not equal to 0

Example 5

You pay \$5 and randomly draw a card from a standard 52-card deck.
If you draw an 7, you win four times your bet.
If you draw a face card, you win twice your bet.
If you draw any other card, you lose.

If this game fair?

Outcome	Probability	NET Value (Win - Bet)	$P \times V$
7	$\frac{4}{52}$	$20-5=15$	$\frac{15}{13}$
Face	$\frac{16}{52}$	$10-5=5$	$\frac{20}{13}$
Other	$\frac{32}{52}$	$0-5=-5$	$\frac{-40}{13}$

$$
\begin{aligned}
& \text { M.E. }=\frac{15}{13}+\frac{20}{13}+\frac{-40}{13} \\
& \text { M.E. }=\frac{-5}{13} \text { or }-0.38
\end{aligned}
$$

Game is NOT fair because M.E. does NOT equal 0

When the expected value is already known, but the bet or a prize amount is unknown, we must work backwards to find it...

Example 1

In a game of chance, you bet a certain amount to roll a die.
If you roll a 1, you win $\$ 10$.
If you roll a 6, you win \$5
If you roll anything else, you lose.
How much should you bet to make this game fair?

Outcome	Probability	NET Value (Win - Bet)	$P \times V$
1	$\frac{1}{6}$	$10-x$	$\frac{5}{3}-\frac{1}{6} x$
6	$\frac{1}{6}$	$5-x$	$\frac{5}{6}-\frac{1}{6} x$
$2,3,4,5$	$\frac{4}{6}$	$0-x=-x$	$\frac{-4}{6} x$

$$
\begin{array}{rl}
\text { M.E. }=\frac{5}{3}-\frac{1}{6} & x+\frac{5}{6}-\frac{1}{6} x+\frac{-4}{6} x \\
0 & =\frac{5}{2}+-1 x \\
1 & x=\frac{5}{2} \text { or } 2.5
\end{array}
$$

You should bet \$2.50

Example 2

A game of chance involves opening one of nine doors. Behind these doors are 4 circles, 3 rhombuses and 2 triangles. Players must bet $\$ 5$ to play.

If a circle is revealed, players lose their bet.
If a rhombus is revealed, players win $\$ 2$ and keep their bet.

If a triangle is revealed, players win a certain amount of money and keep their bet.

The game is said to be fair. How much money does a player win for choosing a triangle?

Outcome	Probability	NET Value (Win - Bet)	PxV
Circle	$\frac{4}{9}$	$0-5=-5$	$\frac{-20}{9}$
Rhombus	$\frac{3}{9}$	$7-5=2$	$\frac{2}{3}$
Triangle	$\frac{2}{9}$	x	$\frac{2}{9} \times$

$$
\begin{gathered}
\text { M.E. }=\frac{-20}{9}+\frac{2}{3}+\frac{2}{9} x \\
0=\frac{-14}{9}+\frac{2}{9} x \\
\frac{14}{9}=\frac{2}{9} x \\
X=7
\end{gathered}
$$

The player will win \$7

