Probability

- Probability (P) is the mathematics of chance
- Probability can be expressed as a fraction
- Probability can be expressed as a ratio (odds for : odds against)
- Probability can be expressed as a percent / decimal (chance of rain is 40%)

Sample Space / Universal Set

- List of <u>all</u> the possible outcomes
- Omega Symbol is used to represent sample space / universal set : $\Omega = \{ ... \}$

Examples:

What is the universal set for rolling a 6 sided die?

 $\Omega = \{1, 2, 3, 4, 5, 6\}$

What is the universal set for tossing a coin?

 $\Omega = \{\text{heads}, \text{tails}\}$

What is the universal set for tossing 2 coins?

 $\Omega = \{\text{heads} / \text{heads}, \text{heads} / \text{tails}, \text{tails} / \text{heads}, \text{tail} / \text{tails} \}$

What is the universal set for rolling two 6 sided dice?

 $\Omega = \{ 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 2 1, 2 2, 2 3, 2 4, 2 5, 2 6, 3 1, 3 2, 3 3, 3 4, 3 5, 3 6, 4 1, 4 2, 4 3, 4 4, 4 5, 4 6, 5 1, 5 2, 5 3, 5 4, 5 5, 5 6, 6 1, 6 2, 6 3, 6 4, 6 5, 6 6 \}$

Multiplication Rule

When an experiment is composed of more than 1 step or done more than once, we can multiply the number of outcomes in each game to determine the number of total outcomes

Example:

You roll a 6-sided dice and then toss a coin

How many outcomes would there be?

There are 6 outcomes for the dice (1, 2, 3, 4, 5, 6) and there are 2 outcomes for the coin (Heads or Tails)

Multiplication Rule: 6 outcomes x 2 outcomes = 12 possible outcomes

Tom has 3 exams coming up. If we use P to represent a passing exam and F to represent a failing exam, how many possible outcomes would Tom have?

Exam #1 – 2 outcomes \rightarrow pass or fail Exam #2 – 2 outcomes \rightarrow pass or fail Exam #3 – 2 outcomes \rightarrow pass or fail 2 x 2 x 2 = 8 possible outcomes

 $\Omega = \{PPP, PPF, PFP, PFF, FFF, FFP, FPF, FPP\}$

The multiplication rule is a good way to check to see if you are missing any outcomes in your sample set / universal set.

Calculating Probability

Probability is represented by numbers ranging between 0 and 1 (when using fractions or decimals) or 0 and 100% (when using percentages)

To calculate probability we use the following formula:

$$\mathsf{P} = \frac{number \ of \ desired \ outcomes}{total \ number \ of \ outcomes}$$

Examples:

What is the probability of rolling a 5?

$$\Omega = \{1, 2, 3, 4, 5, 6\}$$

$$P = \frac{1}{6} \text{ or } 0.17$$

What is the probability of rolling a number greater than 4?

Ω = {1, 2, 3, 4, 5, 6}
P =
$$\frac{2}{6}$$
 or 0.33

What is the probability of rolling a number less than 7?

Ω = {1, 2, 3, 4, 5, 6}
P =
$$\frac{6}{6}$$
 or 1

What is the probability of rolling a 12?

Ω = {1, 2, 3, 4, 5, 6}
P =
$$\frac{0}{6}$$
 or 0

You randomly pick a card from a standard 52-card deck.

What is the probability of drawing:

A black card?

$$P = \frac{1}{2} \text{ or } 0.5$$

Half the cards are black and the other half are red

A face card? (NOTE – I consider any card without a number on it a face card)

$$P = \frac{16}{52}$$
 or 0.31

Jack Queen King Ace For Hearts, Diamonds, Spades and Clubs ... 4 x 4 = 16

A red king?

$$P = \frac{2}{52}$$
 or 0.04

King of Hearts and King of Diamonds

A joker?

$$\mathsf{P} = \frac{0}{52} \text{ or } 0$$

There are no jokers in a 52 card deck

• A bag contains 9 marbles: 3 red, 1 white and 5 blue. You select a marble at random.

What is the probability of drawing a red?

 $\Omega = \{RED, RED, RED, WHITE, BLUE, BLUE, BLUE, BLUE, BLUE\}$

$$P = \frac{3}{9} \text{ or } 0.33$$

What is the probability of drawing a blue?

 $\Omega = \{RED, RED, RED, WHITE, BLUE, BLUE, BLUE, BLUE, BLUE\}$

$$P = \frac{5}{9}$$
 or 0.56

Logical Connectors

In some situations, you are asked to determine the probability of multiple events. There are key words to help make the calculations easier:

The word 'and' implies multiplication of probability

The word 'or' implies addition of the probability

Examples:

• A bag contains 9 marbles: 3 red, 1 white and 5 blue. You select 2 marble at random, in succession, replacing the previous marble.

What is the probability of drawing 2 reds?

Hint \rightarrow this can be reworded to drawing 1 red <u>and</u> then another red

$$P = \frac{3}{9} \times \frac{3}{9} = \frac{1}{9} \text{ or } 0.11$$

What is the probability of picking a blue or a white?

$$P = \frac{5}{9} + \frac{1}{9} = \frac{2}{3} \text{ or } 0.67$$

• A bag contains 6 marbles: 2 green and 4 yellow. You select 2 marble at random, in succession, without replacing the previous marble.

What is the probability of drawing a green and then a yellow?

$$P = \frac{2}{6} \times \frac{4}{5} = \frac{4}{15} \text{ or } 0.27$$

The 2nd denominator changed because we took out a marble on the first draw.

What is the probability of drawing 3 yellow?

Hint \rightarrow this can be reworded to drawing 1 yellow, and then another yellow and then another yellow.

$$P = \frac{4}{6} \times \frac{3}{5} = \frac{2}{4} = \frac{1}{5} \text{ or } 0.20$$

The numerator changes as well here because we are taking away yellows and then trying to draw yellows again.

• A box contains 6 marbles: 2 blue, 1 green and 3 red. Two marbles are drawn in succession and without replacement.

What is the probability that both marbles are the same colour?

You are looking to draw RR or BB

Note \rightarrow Reword this to drawing a red and then a red OR a blue and then a blue

$$\mathsf{P} = \left(\frac{2}{6} \times \frac{1}{5}\right) + \left(\frac{3}{6} \times \frac{2}{5}\right) = \frac{4}{15} \text{ or } 0.27$$